OpenSceneGraph & VRPN : Tips and Tricks

Extrait du bhbn.free.fr
http://bhbn.free.fr/spip.php?articlel6

OpenSceneGraph & VRPN :
Tips and Tricks

- Developments -

Date de mise en ligne : Saturday 1 November 2008

bhbn.freefr

Copyright © bhbn.free.fr Page 1/10

http://bhbn.free.fr/spip.php?article16
http://bhbn.free.fr/spip.php?article16
http://bhbn.free.fr/spip.php?article16
http://bhbn.free.fr/spip.php?article16

OpenSceneGraph & VRPN : Tips and Tricks

Abstract

This short document explains how to program with OpenSceneGraph in order to control objects or the camera from
external tracking. These are however general guidelines which can be used for programming many things. | present
how to create an OSG node callback, how to connect to a remove VRPN tracker, and how to create a custom
camera manipulator.

Visiting a node during update

Given that you have a ref to a node in the scenegraph;

0sg: : Node *nynode;

You want to move it at every update. For this, you create a NodeCallback which is dedicated to your needs. So let's
define the class;

cl ass MyUpdat eCal | back : public osg:: NodeCal | back
{

doubl e last_visit, deltat;

int last_traversal nunber;

public:

/1 Constructor
PhonenmonUpdat eCal | back(): last_visit (0.0), deltat (0.0),last_traversal _nunber (0)
{}

/'l Operator () called during update

virtual void operator() (osg::Node* node, o0sg::NodeVisitor* nv);

The constructor is emtpy (default NodeCallback constructor) but the '()' operator will be defined later. You can now
(somewhere where your node is available) associate an instance of this callback to the node;

mynode - >set Updat eCal | back (new MyUpdat eCal | back());

Well, now, make sure your callback does something;

Copyright © bhbn.free.fr Page 2/10

http://bhbn.free.fr/spip.php?article16
http://bhbn.free.fr/spip.php?article16

OpenSceneGraph & VRPN : Tips and Tricks

voi d MyUpdat eCal | back: : operator() (osg::Node* node, o0sg::NodeVisitor* nv)

{
/'l conmpute deltat ; only once per traversal!
if (nv->getTraversal Nunber () != last_traversal _nunber && nv->get FranmeStanp())
{
/] update renmining tine
doubl e tick = nv->getFrameStanp()->get Si mul ati onTi me();
/1 skip the first update,
/1 (it could be too big, breaking the sinulation)
if (last_visit >0)
deltat = tick - last_visit;
/1
/1 DO SOVETH NG HERE
/1
/'l update tinme for next itteration
last_visit = tick;
| ast _traversal _nunber = nv->getTraversal Nunmber ();
}
/'l the callback could be associated to nore nodes, let it continue its way
traverse(node, nv);
}

Copyright © bhbn.free.fr Page 3/10

http://bhbn.free.fr/spip.php?article16
http://bhbn.free.fr/spip.php?article16

OpenSceneGraph & VRPN : Tips and Tricks

Creating a VRPN client to get data from a tracker

First, you need to define a client for a remote tracker;

#i ncl ude <vrpn/vrpn_Tracker.h> vrpn_Tracker_Renote *_tkr;

For later, you will need to have a some user data allocated somewhere to put the tracker info into it. We want to use
it into OSG so let's create a transformation matrix.

0sg:: Matrixd _mat;

The VRPN update will be done by callback function, so you also need to declare this function. Notice that the function
is generic, and takes a pointer to void instead of a pointer to your matrix (it is the C way to implement polymorphism).
The other argument is passed by VRPN with the actual sensor data.

voi d handl e_tracker(void *userdata, const vrpn_TRACKERCB t);

Now, you can create your tracker and assign it the matrix and callback function. To instanciate a new vrpn remote
tracker, you just give it in argument the string describing the tracker; the string device could be "TrackerO@localhost"
if a local server runs with a tracker called "TrackerQ" (defined in vrpn.cfg), or in IMI case "TI1@tcp://10.59.64.96" [1]
for a remote tracker "TI1" running on the machine whose IP is 10.59.64.96. Multiple clients (and machines) can
simultaneously access to the tracker data.

_tkr = new vrpn_Tracker_Renot e(device.c_str());

_tkr->regi ster_change_handl er (& mat, handl e_tracker);

You can now initialise your matrix by reading data from VRPN

/1 Call the VRPN main |oop:
/1 the callback gets called
_tkr->mai nl oop();

Of course, we have to define what the handle_tracker callback does:

Copyright © bhbn.free.fr Page 4/10

#nb1
http://bhbn.free.fr/spip.php?article16
http://bhbn.free.fr/spip.php?article16

OpenSceneGraph & VRPN : Tips and Tricks

voi d handl e_tracker(void *userdata, const vrpn_TRACKERCB t) ({

0sg::Matrixd rmatrix,tmatrix;
/'l get the rotation of the tracker into a tnp matrix

rmatrix. makeRot at e(osg:: Quat (t.quat[0], t.quat[1], t.quat[2], t.quat[3]));

/'l get the translation of the tracker into a tnp matrix

tmatri x. nakeTransl ate(t. pos[0], t.pos[1l], t.pos[2]);

/1 fill in the user data matrix (it is in fact our _nmat)
/1 with the conbination of rotation and translation

*((osg::Matrixd *)(userdata)) = rmatrix * tmatrix;

Copyright © bhbn.free.fr Page 5/10

http://bhbn.free.fr/spip.php?article16
http://bhbn.free.fr/spip.php?article16

OpenSceneGraph & VRPN : Tips and Tricks

So, now, every time you call _tkr-»mainloop();, the matrix _mat is updated with VRPN sensor data.

For example, you may want to set the matrix of Transform node from a VRPN tracker data: this can be done with an
update visitor (see above) applied on a osg::MatrixTransform node; it is in the update visitor that the VRPN mainloop
shall be called.

Setting up a custom camera manipulator

In OSG, the camera is not part of the scene graph. Therefore, it cannot be manipulated like a node with a visitor. But
of course, there is another and dedicated way to do it.

First, let's check how the camera manipulators are created and assigned to a viewer (in a main file of your OSG
program);

/1 given your viewer is there:

osgVi ewer: : Vi ewer viewer(argunents);

/] Create a 'nmeta' manipul ator which handl es key press to change mani pul at or

0sg: :ref _ptr<osgGA: : KeySwi t chivat ri xMani pul at or > ksw = new 0sgGA: : KeySwi t chMat ri xMani pul at or;

/'l Create several camera nmanipul ators.

ksw >addMat ri xMani pul ator('1', "Trackball", new osgGA:: Trackbal | Mani pul ator());
ksw >addMat r i xMani pul ator(' 2 "Flight", new osgGA:: FlightManipulator());
ksw >addMat ri xMani pul ator('3', "Drive", new osgGA::DriveManipulator());
ksw >addMat ri xMani pul ator('4 "Terrain", new osgGA: : Terrai nMani pulator());
/'l attach to the viewer

vi ewer . set Canmer aMani pul ator (ksw. get ());

These are the predefined manipulators of OSG. What we need is a custom implementation of one.

Here is an example which | call 'follow manipulator' which can be used to follow a given object in the scene.
Whatever happens to the transform node followed is applied to the camera. This is done by inheriting from a matrix
manipulator, where we have to implement a set of virtual methods.

Copyright © bhbn.free.fr Page 6/10

http://bhbn.free.fr/spip.php?article16
http://bhbn.free.fr/spip.php?article16

OpenSceneGraph & VRPN : Tips and Tricks

#i ncl ude cl ass Fol | owivani pul ator: public osgGA:: Matri xMani pul ator {

cl ass UnknownTransf ormiype {};

public:

Fol | owiani pul at or (Mat ri xTransf orm *node, osg:: Matrixd& of fset):
Mat ri xMani pul at or:: Matri xMani pul ator (), _mat(node), _offset(offset)

{1}

virtual bool handl e(const osgGA:: GUl Event Adapter & 0sgGA: : GUl Acti onAdapter &) ;
virtual void setByMatrix(const osg::Matrixd& m;

virtual osg::Mtrixd getMatrix() const;

virtual void setBylnverseMatrix(const osg::Mtrixd &m;

virtual osg::Matrixd getlnverseMatrix() const;

private:

0sg:: MatrixTransform *_mat;

0sg:: Matrixd _of fset;

Copyright © bhbn.free.fr Page 7/10

http://bhbn.free.fr/spip.php?article16
http://bhbn.free.fr/spip.php?article16

OpenSceneGraph & VRPN : Tips and Tricks

As you can see, the FollowManipulator class keeps a reference to a transform node and to local offset matrix; this
matrix will give the relative placement of the camera to the object (e.g. translation on the -Z axis to be abble to see
the object). The set of methods is to be implemented to allow OSG to use the manipulator.

Now, the more important is the ‘getMatrix’ method of our matrix manipulator; this is the function called when the
camera is checked in OSG.

0sg:: Matrixd Fol | omvani pul ator::getMatrix() const {

0sg:: Matrix mat;

/1 get the matrix of the object node
mat = *(_mat->get Wrl dMatrices().begin());

/'l apply the of fset

mat = osg::Matrixd::inverse(_offset) * nmat;

/1l this is where the canmera shoul d be

return mat;

The function 'getWorldMatrices' (notice the plurial form) returns a vector of matrices, so we just take the first one. The
other functions are pretty straightforward, and often just empty;

/1 we don't want the user to be able to set the matrix

voi d Fol | omvani pul ator::setByMatri x(const osg:: Matrixd& m {}

voi d Fol | omvani pul ator:: set Byl nverseMatri x(const osg:: Matrixd& m {}

/] getting the inverse is easy
0sg:: Matrixd Fol | omvani pul ator::getlnverseMatrix() const {

return osg:: Matrix::inverse(getMatrix());

/1 we have nothing to handle here (no device)
bool Fol | owivani pul at or: : handl e(const 0sgGA: : GUl Event Adapt er & 0sgGA: : GJl Acti onAdapter &) {
return fal se;

So, now, considering you have a pointer to an object node (e.g. osg::MatrixTransform *mynode) you can use you
manipulator:

Copyright © bhbn.free.fr Page 8/10

http://bhbn.free.fr/spip.php?article16
http://bhbn.free.fr/spip.php?article16

OpenSceneGraph & VRPN : Tips and Tricks

0sg:: Matrixd m

m set Trans(0.0, 0.0, -5.0);

ksw >addMat ri xMani pul ator('5', "Follow', new osgGA:: Fol | owVani pul at or (nynode, m);

Copyright © bhbn.free.fr Page 9/10

http://bhbn.free.fr/spip.php?article16
http://bhbn.free.fr/spip.php?article16

OpenSceneGraph & VRPN : Tips and Tricks

In this case, it will be activated when you hit the key '5'. To make the last one added the active one, just do:

ksw >sel ect Mat ri xMani pul at or (ksw- >get Numivat ri xMani pul ators() - 1);

[1] The address of the server is given with the "tcp://" prefix in order to guarantee that VRPN uses TCP to establish the connection; this is
necessary sometimes in order to work inside protected networks (schools, universities), as the usual default approach is fast but unsafe.

Copyright © bhbn.free.fr Page 10/10

#nh1
http://bhbn.free.fr/spip.php?article16

